1 Deterministic Constrained Problems
Formally speaking, we consider the following convex constrained minimization
problem

min{f(x): x€XCE, g(x) <0}, (1)

In this section, we consider problem (1) in two different settings, namely, non-
smooth Lipschitz-continuous objective function f and general objective function
f» which is not necessarily Lipschitz-continuous, e.g. a quadratic function. In both
cases, we assume that g is non-smooth and is Lipschitz-continuous

lg(x) —g(y)] < Mg|lx—yll2, x,y€eX. 2)
Let x, be a solution to (1). We say that a point X € X is an €-solution to (1) if
fE)—flx) <e, g®<e. (3)

The methods we describe are based on the of Polyak’s switching subgradient
method [4] for constrained convex problems, also analyzed in [3], and Mirror De-
scent method originated in [2]; see also [1].

1.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

[fO) = FI < Mpllx=yll2, %y €X. €y

Let x, be a solution to (1) and assume that we know a constant ®y > 0 such that

1
S0 —x.3 < & (5)

Theorem 1. Assume that inequalities (2) and (4) hold and a known constant ®y > 0
is such that % ||xo —x.||3 < ©F. Then, Algorithm I stops after not more than

. {2max{M27M§}®g—‘
2

(6)

iterations and 7 is an e-solution to (1) in the sense of (3).

Proof. First, let us prove that the inequality in the stopping criterion holds for
k defined in (6). By (2) and (4), we have that, for any i € {0,....k— 1}, M; <

k—1 202
maX{Mf,Mg} Hence, by (6), Zoﬁ Z WNE} = ?20
J=0"J ’
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Algorithm 1 Adaptive Subgradient Descent (Non-Smooth Objective)
Input: accuracy € > 0; @ s.t. %on — x5 <@g

1: 2% = xo.

2: Initialize the set / as empty set.

3: Setk=0.

4: repeat

5: 1fg(x ) < € then

6: =|vs @) ll2.

7: hk M2

8: K = oy (k= i VF(x¥)) (’productive step”)

9: Add ktoI.
10: else
11: HVg( )2
12: hk

k
13: HH = 7y (¥ — hy Vg(x%)) ("non-productive step™)
14:  endif
15: Set k k+ 1.
16: until Z > 28920
Jj=0 /
¥ hixt

Output: i~ := ’Eé—hl

i€l

Denote [k] = {i € {0,...,k—1}}, J = [k] \ 1. From main Lemma for subgradient
descent, we have, foralli€/and all u € X,

N

hi- (F(x) = f(u)) < " v )||2+*||l—u|\z 1||x’+1 ull3

v \

and, forallie Jand all u € X

2
. 1. . 1. .
hi- (8(x') —g(u)) < jl\Vg( D3+ 51 —ullf = 5 x™ —ulf3.

Summing up these inequalities for i from O to k — 1, using the definition of A;, i €
{0,...,k— 1}, and taking u = x,, we obtain

Zhi (f(xl) _f(x*)) +Zhi(g(xi) _g(x*))

i€l ieJ
h2M? Mm? , 1,
Z Z +) QIIX’—X*H%—EIIX’“ —x3)
i€l ieJ ic[k]
<5 £Y h+6g. )
iclk]

Since, for i € J, g(x) — g(x.) > g(x) > &, by convexity of f and the definition of

i, we have



(Zm) (/) = £(6) < X b (F0) = () < 5 ZHhi —e) hi+6]
i€k

icl icl ieJ
B e? 1 >
_giezlh,-—?ZWJr@O ,szh,-, (8)
iclk] i iel

where in the last inequality, the stopping criterion is used. As long as the inequality
is strict, the case of the empty I is impossible. Thus, the point &* is correctly defined.
Dividing both parts of the inequality by Y A;, we obtain the left inequality in (3).
i€l
For i € I, it holds that g(x') < €. Then, by the definition of ¥ and the convexity
of g,

-1
g(F) < (Z%) Y hig(x') <e.
il il

O

Let us now show that Algorithm 1 allows to reconstruct an approximate solution
to the problem, which is dual to (1). We consider a special type of problem (1) with
g given by

)= _ max {gi(0)}. ©)
Then, the dual problem to (1) is
o) =mip {70+ LAwi)} = max  o(2) (10)

where A; > 0,i = 1,...,m are Lagrange multipliers.
We slightly modify the assumption (5) and assume that the set X is bounded and
that we know a constant &y > 0 such that

1 2 - o2
lxnggllxo —x[l3 < ©.

As before, denote [k] = {j € {0,...,k—1}},J = [k]\ 1. Let j € J. Then a subgra-
dient of g(x) is used to make the j-th step of Algorithm 1. To find this subgradient,
it is natural to find an active constraint i € 1,...,m such that g(x/) = g;(x/) and use
Vg(x/) = Vgi(x/) to make a step. Denote i(j) € 1,...,m the number of active con-
straint, whose subgradient is used to make a non-productive step at iteration j € J.
In other words, g(x/) = g;;)(x/) and Vg(x/) = Vg; ; (x/). We define an approximate
dual solution on a step k > 0 as

2=t
COLh Jjedi(j)=i

jel

hj, i€{l,..,m}. (11)

and modify Algorithm 1 to return a pair (%, 1).
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Theorem 2. Assume that the set X is bounded, the inequalities (2) and (4) hold and
a known constant ©y > 0 is such that d(x,) < @g. Then, modified Algorithm 1 stops

after not more than
‘o {Zmax{Mz,Mé}@g-‘

82

iterations and the pair (3~ ik) returned by this algorithm satisfies

f@) -9 <e gl <e. (12)
Proof. From the main Lemma for one step of the subgradient descent, we have, for
all jelandallu € X,
j h? INFIR, IR TS| 2
hi(f&) = f ) < IV + 5 —ull = 51 —ullz
and, for all j € Jand all u € X,

hj(gi(j)(xj) — gy (w) < hj<vgi(j)(xj)7xj_”>
— hy(Vgad), ¥ — )
2 . 1. 1.
< V) B+ 4 I~ ulf— I ).

Summing up these inequalities for j from O to kK — 1, using the definition of #;,
j€10,....,k—1}, we obtain, for all u € X,

Y hi(FO) = fw) + Y Ry (8i () — gig ()

J€l jes
h2M? nMm? 1 L
<Y AL G w5 )
i€l jel Jjelk
€ 2
< 5 Z hj+®0-
JEIK]

Since, for j € J, gy (x/) = g(x/) > €, by convexity of f and the definition of i~ we
have, forall u € X,



(Z h;) (F&) = fw) < Y hj (F7) — f(w))
Jjel jel
<2 Y i+ 03— Xy () — i) ()
JE[k] jeJ
8
<3 hi+O5 —€ Y hi+ Y higij)(u)
Sl il jeJ
S
= ZhJ ) Z M2 +@3—|—Zh1g,(1>(u)
jel VE jeJ
<eY hi+Y hjgi(u), (13)
jel jeJ

where in the last inequality, the stopping criterion is used. At the same time, by (11),
forallu € X,

Zhjgi(j)(u) = i Z ng <Zh ) iizkgt(“)
= =1 jel (i jer )i

This and (13) give, for all u € X,

(Z hj) f()fk < <Z hj) (f(u) —+ €+ i Zikgi(u)> .
jel jel i=1

Since the inequality is strict and holds for all # € X, we have ( Yy hj) # 0 and
el

f(#) <e+min {f(u) + Zl /V‘gi(u)}
=e+p(Ab). (14)

Second inequality in (12) follows from Theorem 1. ad
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