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1 Deterministic Constrained Problems

Formally speaking, we consider the following convex constrained minimization
problem

min{ f (x) : x ∈ X ⊂ E, g(x)≤ 0}, (1)

In this section, we consider problem (1) in two different settings, namely, non-
smooth Lipschitz-continuous objective function f and general objective function
f , which is not necessarily Lipschitz-continuous, e.g. a quadratic function. In both
cases, we assume that g is non-smooth and is Lipschitz-continuous

|g(x)−g(y)| ≤Mg‖x− y‖2, x,y ∈ X . (2)

Let x∗ be a solution to (1). We say that a point x̃ ∈ X is an ε-solution to (1) if

f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε. (3)

The methods we describe are based on the of Polyak’s switching subgradient
method [4] for constrained convex problems, also analyzed in [3], and Mirror De-
scent method originated in [2]; see also [1].

1.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

| f (x)− f (y)| ≤M f ‖x− y‖2, x,y ∈ X . (4)

Let x∗ be a solution to (1) and assume that we know a constant Θ0 > 0 such that

1
2
‖x0− x∗‖2

2 ≤Θ
2
0 . (5)

Theorem 1. Assume that inequalities (2) and (4) hold and a known constant Θ0 > 0
is such that 1

2‖x0− x∗‖2
2 ≤Θ 2

0 . Then, Algorithm 1 stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
(6)

iterations and x̄k is an ε-solution to (1) in the sense of (3).

Proof. First, let us prove that the inequality in the stopping criterion holds for
k defined in (6). By (2) and (4), we have that, for any i ∈ {0, ...,k− 1}, Mi ≤

max{M f ,Mg}. Hence, by (6),
k−1
∑
j=0

1
M2

j
≥ k

max{M2
f ,M

2
g}
≥ 2Θ 2

0
ε2 .
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Algorithm 1 Adaptive Subgradient Descent (Non-Smooth Objective)
Input: accuracy ε > 0; Θ0 s.t. 1

2‖x0− x∗‖2
2 ≤Θ 2

0 .
1: x0 = x0.
2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk)≤ ε then
6: Mk = ‖∇ f (xk)‖2,
7: hk =

ε

M2
k

8: xk+1 = πX (xk−hk∇ f (xk)) (”productive step”)
9: Add k to I.

10: else
11: Mk = ‖∇g(xk)‖2
12: hk =

ε

M2
k

13: xk+1 = πX (xk−hk∇g(xk)) (”non-productive step”)
14: end if
15: Set k = k+1.

16: until
k−1
∑
j=0

1
M2

j
≥ 2Θ 2

0
ε2

Output: x̄k :=
∑
i∈I

hixi

∑
i∈I

hi

Denote [k] = {i ∈ {0, ...,k−1}}, J = [k]\ I. From main Lemma for subgradient
descent, we have, for all i ∈ I and all u ∈ X ,

hi ·
(

f (xi)− f (u)
)
≤ h2

i
2
‖∇ f (xi)‖2

2 +
1
2
‖xi−u‖2

2−
1
2
‖xi+1−u‖2

2

and, for all i ∈ J and all u ∈ X ,

hi ·
(
g(xi)−g(u)

)
≤ h2

i
2
‖∇g(xi)‖2

2 +
1
2
‖xi−u‖2

2−
1
2
‖xi+1−u‖2

2.

Summing up these inequalities for i from 0 to k− 1, using the definition of hi, i ∈
{0, ...,k−1}, and taking u = x∗, we obtain

∑
i∈I

hi
(

f (xi)− f (x∗)
)
+∑

i∈J
hi
(
g(xi)−g(x∗)

)
≤∑

i∈I

h2
i M2

i
2

+∑
i∈J

h2
i M2

i
2

+ ∑
i∈[k]

(1
2
‖xi− x∗‖2

2−
1
2
‖xi+1− x∗‖2

2
)

≤ ε

2 ∑
i∈[k]

hi +Θ
2
0 . (7)

Since, for i ∈ J, g(xi)− g(x∗) ≥ g(xi) > ε , by convexity of f and the definition of
x̄k, we have



3(
∑
i∈I

hi

)(
f (x̄k)− f (x∗)

)
≤∑

i∈I
hi
(

f (xi)− f (x∗)
)
<

ε

2 ∑
i∈[k]

hi− ε ∑
i∈J

hi +Θ
2
0

= ε ∑
i∈I

hi−
ε2

2 ∑
i∈[k]

1
M2

i
+Θ

2
0 ≤ ε ∑

i∈I
hi, (8)

where in the last inequality, the stopping criterion is used. As long as the inequality
is strict, the case of the empty I is impossible. Thus, the point x̄k is correctly defined.
Dividing both parts of the inequality by ∑

i∈I
hi, we obtain the left inequality in (3).

For i ∈ I, it holds that g(xi) ≤ ε . Then, by the definition of x̄k and the convexity
of g,

g(x̄k)≤

(
∑
i∈I

hi

)−1

∑
i∈I

hig(xi)≤ ε.

ut

Let us now show that Algorithm 1 allows to reconstruct an approximate solution
to the problem, which is dual to (1). We consider a special type of problem (1) with
g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (9)

Then, the dual problem to (1) is

ϕ(λ ) = min
x∈X

{
f (x)+

m

∑
i=1

λigi(x)
}
→ max

λi≥0,i=1,...,m
ϕ(λ ), (10)

where λi ≥ 0, i = 1, ...,m are Lagrange multipliers.
We slightly modify the assumption (5) and assume that the set X is bounded and

that we know a constant Θ0 > 0 such that

max
x∈X

1
2
‖x0− x‖2

2 ≤Θ
2
0 .

As before, denote [k] = { j ∈ {0, ...,k−1}}, J = [k]\ I. Let j ∈ J. Then a subgra-
dient of g(x) is used to make the j-th step of Algorithm 1. To find this subgradient,
it is natural to find an active constraint i ∈ 1, ...,m such that g(x j) = gi(x j) and use
∇g(x j) = ∇gi(x j) to make a step. Denote i( j) ∈ 1, ...,m the number of active con-
straint, whose subgradient is used to make a non-productive step at iteration j ∈ J.
In other words, g(x j) = gi( j)(x j) and ∇g(x j) =∇gi( j)(x j). We define an approximate
dual solution on a step k ≥ 0 as

λ̄
k
i =

1
∑
j∈I

h j
∑

j∈J,i( j)=i
h j, i ∈ {1, ...,m}. (11)

and modify Algorithm 1 to return a pair (x̄k, λ̄ k).
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Theorem 2. Assume that the set X is bounded, the inequalities (2) and (4) hold and
a known constant Θ0 > 0 is such that d(x∗)≤Θ 2

0 . Then, modified Algorithm 1 stops
after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
iterations and the pair (x̄k, λ̄ k) returned by this algorithm satisfies

f (x̄k)−ϕ(λ̄ k)≤ ε, g(x̄k)≤ ε. (12)

Proof. From the main Lemma for one step of the subgradient descent, we have, for
all j ∈ I and all u ∈ X ,

h j
(

f (x j)− f (u)
)
≤

h2
j

2
‖∇ f (x j)‖2

2 +
1
2
‖x j−u‖2

2−
1
2
‖x j+1−u‖2

2

and, for all j ∈ J and all u ∈ X ,

h j
(
gi( j)(x

j)−gi( j)(u)
)
≤ h j〈∇gi( j)(x

j),x j−u〉
= h j〈∇g(x j),x j−u〉

≤
h2

j

2
‖∇g(x j)‖2

2 +
1
2
‖x j−u‖2

2−
1
2
‖x j+1−u‖2

2.

Summing up these inequalities for j from 0 to k− 1, using the definition of h j,
j ∈ {0, ...,k−1}, we obtain, for all u ∈ X ,

∑
j∈I

h j
(

f (x j)− f (u)
)
+ ∑

j∈J
h j
(
gi( j)(x

j)−gi( j)(u)
)

≤∑
i∈I

h2
jM

2
j

2
+ ∑

j∈J

h2
jM

2
j

2
+ ∑

j∈[k]

(1
2
‖x j−u‖2

2−
1
2
‖x j+1−u‖2

2
)

≤ ε

2 ∑
j∈[k]

h j +Θ
2
0 .

Since, for j ∈ J, gi( j)(x j) = g(x j)> ε , by convexity of f and the definition of x̄k, we
have, for all u ∈ X ,



5(
∑
j∈I

h j

)(
f (x̄k)− f (u)

)
≤∑

j∈I
h j
(

f (x j)− f (u)
)

≤ ε

2 ∑
j∈[k]

h j +Θ
2
0 −∑

j∈J
h j
(
gi( j)(x

j)−gi( j)(u)
)

<
ε

2 ∑
j∈[k]

hi +Θ
2
0 − ε ∑

j∈J
hi + ∑

j∈J
h jgi( j)(u)

= ε ∑
j∈I

h j−
ε2

2 ∑
j∈[k]

1
M2

j
+Θ

2
0 + ∑

j∈J
h jgi( j)(u)

≤ ε ∑
j∈I

h j + ∑
j∈J

h jgi( j)(u), (13)

where in the last inequality, the stopping criterion is used. At the same time, by (11),
for all u ∈ X ,

∑
j∈J

h jgi( j)(u) =
m

∑
i=1

∑
j∈J,i( j)=i

h jgi( j)(u) =

(
∑
j∈I

h j

)
m

∑
i=1

λ̄
k
i gi(u).

This and (13) give, for all u ∈ X ,(
∑
j∈I

h j

)
f (x̄k)<

(
∑
j∈I

h j

)(
f (u)+ ε +

m

∑
i=1

λ̄
k
i gi(u)

)
.

Since the inequality is strict and holds for all u ∈ X , we have
(

∑
j∈I

h j

)
6= 0 and

f (x̄k)< ε +min
u∈X

{
f (u)+

m

∑
i=1

λ̄
k
i gi(u)

}
= ε +ϕ(λ̄ k). (14)

Second inequality in (12) follows from Theorem 1. ut
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